If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+6t-27=0
a = 3; b = 6; c = -27;
Δ = b2-4ac
Δ = 62-4·3·(-27)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{10}}{2*3}=\frac{-6-6\sqrt{10}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{10}}{2*3}=\frac{-6+6\sqrt{10}}{6} $
| 7(x-8)=19=-16 | | 3x+18=3(x+18) | | x2+1=(−x+5)(2x−1) | | 11x=2=90 | | -6x+1=100+3x | | 7x3=9 | | 2x+14=3x+3 | | 11x+7=90 | | 28=-7(2x-3 | | 96-6x^2=96−6x2 | | 15/3x+2/5-1/3x+1=0 | | x=(15-9)-1 | | 15=-3x/2 | | 2(x+5)+70=180 | | 2x3.6=x | | 4x-⅓=⁷⁄₆ | | -4x+3=-20 | | 9p÷9=54 | | x2+11x+2=0 | | `15=-5(x-4) | | 4x+2+60+58=180 | | 14y-1=3y+120 | | 8x+5+67+52=180 | | 1.20x=90x+240 | | 14y-1=3y | | (4x+2)+60+58=90 | | 53=-2f+63 | | 20x=15x+2000 | | 17=-9t+53 | | 20x=15x+200 | | 26=4g+30 | | 2x+18(1-x)=6 |